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A novel method of 3D object recognition independent of lighting conditions is presented. The recognition
model is based on a vector space representation using an orthonormal basis generated by the Lambertian
reflectance functions obtained with distant light sources. Changing the lighting conditions corresponds
to multiplying the elementary images by a constant factor and because of that, all possible lighting views
will be elements that belong to that vector space. The recognition method proposed is based on the
calculation of the angle between the vector associated with a certain illuminated 3D object and that
subspace. We define the angle in terms of linear correlations to get shift and illumination-invariant
detection. © 2006 Optical Society of America
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1. Introduction

Much effort has recently been devoted to optical
digitizing, processing, and recognition of three-
dimensional (3D) objects.1–8 For example, automatic
measurements of 3D object shape can be accomplished
using Fourier transform profilometry.3 Such surface
measurement techniques have also been used for 3D
pattern recognition.9 Other 3D recognition methods
obtain a range image of the 3D object as an interme-
diate step of the recognition task.7,10,11 Another ap-
proach is to use digital holographic techniques,6,12 but
such methods require a long time to calculate the 3D
optical field. Some 3D recognition methods use optical
correlations. Bamler and Hofer-Alfeis13 showed a
method for performing 3D optical correlations by slice-
by-slice mapping the 3D observed scene along its lon-
gitudinal axis. After mapping, they used conventional
2D optical correlations between each slice and all the
others. However, the algorithms to reconstruct the 3D
image require intensive computer resources. Rosen

has extended the correlation from 2D to 3D by intro-
ducing a 3D optical Fourier transform.4 By fusion of
several projections of the tested scene, a 3D object
function is first Fourier transformed, then filtered by
some 3D reference filter, and finally inversely Fourier
transformed into the correlation space, so a target
can be detected and located in its 3D environment.
This highly complex method requires extensive use of
digital computation. To reduce the difficulty, the au-
thors proposed an improvement of the 3D correlation
space.14 Matoba et al.15 captured multiple perspec-
tives of 3D objects by a microlens array, after which
all the perspectives of the reference and of the input
scene were cross correlated by a 2D joint transform
correlator (JTC). The authors showed that the system
can recognize 3D objects with slightly out-of-plane
rotations. In fact, distortion, rotation, and scaling
changes of 3D objects are a challenge in many detec-
tion systems. Some of the above 3D recognition meth-
ods have been extended and new ones were proposed to
deal with that automatic target recognition issue.16–19

Recently, the addition of object color information in
the 3D detection process has been considered.20 The
method is based on a multichannel correlation in
various chromatic systems based on Fourier-transform
profilometry.

Although previous methods dealt with important
topics in correlation-based 3D pattern recognition,
taking into account changes of illumination of objects
has received less attention. It is true that topics re-
lated to illumination such as shape from shading, and
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photometric stereo have been extensively studied in
computer vision.21 We are particularly interested in
detection methods based on linear subspaces created
by an image database with multiple illumination
changes of a given object.22,23 Those processes have
been mainly applied to face recognition, where the
recognition compared a new query image to each
model in turn. To compare the models, a measure of
similarity is required. The differences between 3D
recognition methods depend on the selection of the
subspace and on the measure of similarity applied.
Other recognition methods are vision systems based
on principal components analysis (PCA) and various
Lambertian reflectance illumination models.23 Al-
though the above methods are considered as 3D rec-
ognition, in fact they are not, because no 3D image is
utilized. Instead, a wide 2D database is created with
all perspectives and changes in illumination for given
objects, usually faces.

In this paper, we introduce a 3D recognition
method based on the detection of 3D objects under
changes of illumination conditions. The illumination
model is defined in terms of Lambertian reflectance
surfaces, surfaces that scatter light equally in all
directions and appear equally bright from all viewing
directions. We generate a subspace using an or-
thonormal basis. The basis is defined in terms of
different directional light sources. The recognition
process uses the calculation of the cosine of the angle
between a target and the vector subspace. If the tar-
get belongs to that subspace, the vector that corre-
sponds to the target will be contained in the
subspace, the angle will be zero, and the cosine will be
equal to unity. On the other hand, if the target does
not belong to that space, the cosine will be smaller
than 1. We will define the cosine measurements in
terms of correlations. From the point of view of vector
spaces, intensity invariant pattern recognition con-
sists of recognizing vectors independently of their
length, which can be viewed as an angle measure-
ment between vectors in vector spaces. This angle
provides a measure of the similarity between the ob-
ject and the reference function.

Lefebvre et al.24 defined a nonlinear filtering
method called the locally adaptive contrast invari-
ant filter (LACIF), which is invariant under any
linear intensity transformation. This LACIF oper-
ation uses three correlation operations involving
local statistics and nonlinearities. It was applied
directly to scenes containing unsegmented targets.
One of the advantages of the LACIF method is that
no a priori information about the constant values
involved in the linear illumination model is as-
sumed. The LACIF method can be combined with
synthetic discrimination filters to achieve both illu-
mination invariance and out-of-plane rotation in-
variance.25 The authors recently26 generalized the
LACIF filtering for situations where an additional
linear intensity gradient across an object is present.
It is interesting to consider the LACIF technique in
the context of a vector space interpretation. In this
paper, we have extended the LACIF idea to 3D

object recognition, and we compare both illumina-
tion invariant detection methods.

The paper is organized as follows: In Section 2 the
different illumination techniques for 3D objects are
introduced. The 3D image representation in terms
of vector spaces is in Section 3. The results compar-
ing the new method with the LACIF are presented
in Section 4, and in Section 5 we present our con-
clusion.

2. Illumination Model for Three-Dimensional Images

Variations in lighting can have a big effect on the
appearance of 3D images. When the sources of light
are far from the object, the lighting conditions may be
described by specifying the intensity of light as a
function of direction. Our illumination model is de-
fined in terms of ambient illumination and Lamber-
tian illumination. An ambient light is a diffuse,
nondirectional source of light, typically the result of
multiple reflections of light from many surfaces in the
environment. It has a uniform intensity at any point

Fig. 1. (a) 3D object mesh. (b) Sample view of 3D object shaded.
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in the environment. The influence of ambient illumi-
nation for a given surface can be expressed mathe-
matically as

I1�x, y, z� � Iaka�x, y, z�, (1)

Plp;&-3.77q where Ia is the intensity of ambient light,
and ka�x, y, z� is the ambient-reflection coefficient of
an object’s surface that is determined by the material
properties of the surface. Ambient light will generate
a uniform intensity across the surface of an object.
Note that Eq. (1) gives an intensity distribution for a
3D space. Moreover, we assume that, aside from the
ambient light, the surface of the object reflects light
according to Lambert’s law27 from localized light
sources as

I2�x, y, z� � Ipkl�x, y, z��L�x, y, z� · N�x, y, z��, (2)

where Ip is the point light source’s intensity, kl�x, y, z�
is the material’s diffuse reflection coefficient, L�x, y, z�
is the unit vector of light direction, N�x, y, z� is the
normal unit vector of the surface’s object for a given
point, and · represents the inner or scalar product.

Finally our illumination model is given by the con-
tribution of ambient illumination [Eq. (1)] and Lam-
bertian illumination [Eq. (2)] as

I�x, y, z� � Iaka�x, y, z� � Ipkl�x, y, z�
� �L�x, y, z� · N�x, y, z��. (3)

From Eq. (3) we may obtain images that are not
physically realizable, because the corresponding lin-
ear combination may contain negative values. These
areas define the shadows, so a point P of the surface
is a shadow if the angle between the surface normal
and the direction of light is obtuse, i.e., cos�L · N�
� 0. We shall assume that when the linear combina-
tion of Eq. (3) produces negative gray values, those
values can be set to zero. This criterion is widely used
for purposes of display or recognition.

Although the illumination model considered in
this paper deals with the 3D information of an ob-
ject, from now on we will consider the information of
Eq. (3) as looking at the object from a particular
point of view or perspective. It is similar to taking a
picture of the 3D image, so the images will be two
dimensional. Figure 1(a) shows a 3D object and Fig.
1(b) the corresponding 2D object for a given illumi-
nation and perspective. Figure 1(b) has been calcu-
lated as

where �Ni�x, y��i�x,y,z and �Li�i�x,y,z are the Cartesian
coordinates of L and N�x, y�, respectively. In the lit-
erature, there are more complex illumination mod-
els27 that take into account only matte surfaces, etc.

3. Vector Spaces for Images

Images may be considered as vectors in a Hilbert
space. Then, any vector can be expressed in terms of
an given basis. Correlation is a measure of the simi-
larity between images, because one way to under-
stand the correlation operation is to consider it as an
inner product between two functions, the object and
the reference functions.

I�x, y� ��Iaka�x, y� � Idkl�x, y��LxNx�x, y� � LyNy�x, y� � LzNz�x, y�� if �L · N� � 0
Iaka�x, y� otherwise , (4)

Fig. 2. Geometrical interpretation of LACIF.

Fig. 3. Definition of the angle between a vector and the sub-
space.
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From the point of view of vector spaces, intensity
invariant pattern recognition consists of recognizing
vectors independently of their length, which can be
viewed as an angle measurement between vectors in
vector spaces. This angle provides a measure of the
similarity between the object and the reference func-
tion.

For 2D images, Dickey and Romero28 defined a nor-
malized correlation as a normalization of the inner
product represented by the correlation integral. This
method yields correlation peak values that are invari-
ant under a multiplicative factor. Arsenault and
Lefebvre29 used a homomorphic transformation to
change a multiplicative-intensity problem into an
additive-intensity problem that can be addressed with
the synthetic discriminant filter mentioned above.
Lefebvre et al.24 defined a nonlinear filtering method
LACIF, which is invariant under any linear intensity
transformation. This LACIF operation uses three cor-
relations involving local statistics and nonlinearities.

It was applied directly to scenes containing unseg-
mented targets. One of the advantages of the LACIF
method is that no a priori information about the con-
stant values involved in the linear illumination model
is assumed. The LACIF method can be combined with
synthetic discrimination filters to achieve both illumi-
nation invariance and out-of-plane rotation invari-
ance.24 Recently, in Ref. 25 the authors generalized the
LACIF filtering for situations where a linear intensity
gradient across an object is present.

From our illumination model defined in Eq. (4),
any 3D image can be expressed as a linear combi-
nation of four images (ka�x, y�, �Ni�x, y��i�x,y,z). In this
paper, we define a new method based on a vector
space representation in order to detect 3D objects
under different lighting conditions. Our motivation is
to develop an algorithm to recognize images that can
be defined as a linear combination of other elemen-
tary images. That linear combination is mathemati-
cally defined as

Fig. 4. Vector basis {ka(x, y),[Ni(x, y)]}. (a) is ka(x, y) equal to �0 (x, y), and (b), (c), and (d) are {Ni(x, y)}i�X,Y,Z, respectively.
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f�x, y� � c0v0�x, y� � c1v1�x, y� � c2v2�x, y� � · · · ,
(5)

where f�x, y� is a certain image and �ci�i�0,1,. . . are ar-
bitrary coefficients. For convenience, we assume that
v0�x, y� is the silhouette of the image defined as

v0�x, y� ��1 if f�x, y� � 0
0 otherwise . (6)

Moreover, from Eq. (5), �vi�x, y��i�1, 2,. . . are 2D im-
ages defined inside v0�x, y�. From the point of view of
vector spaces, f�x, y� is a vector (�f	) of a vector sub-
space generated by ��vi	} � �vi�x, y��. In addition, the
inner product between 2D images, a�x, y� and b(x, y),
is defined as


a�b	 � �a � b��0, 0� ��
�2

a*�x, y�b�x, y�dxdy, (7)

where � represents correlation. Note that we use as the
inner product the value of the correlation between two
functions at the origin. In the previous equations, we
have supposed that images are continuous functions
defined in �2. Because of that, the canonical basis of
the vector space is represented by ���x 	 x�, y 	 y��,
∀ x�, y� � �2�. Although the basis has infinite dimen-
sions, for computing the results we have used discrete
images of N1 � N2 pixels. For a certain N1 � N2 �
256 pixel image size, the theoretical dimension of our
space is 256 � 256 � 65,536, which is difficult to
handle from a practical point of view unless strong
restrictions apply. However, from Eq. (5), we just
operate with a vector subspace whose dimensions are
defined by the number of images �vi�x, y��, so the com-
plexity of the dimensionality problem has been re-
duced from infinity to a small finite number.

The basis defined by �vi�x, y�� is neither orthogonal
nor orthonormal. We apply the Gram–Schmidt30 or-
thonormalization method to the basis. Then the ref-
erence image, f�x, y�, can be defined as

f�x, y� � d0 · v̂0�x, y� � d1 · v̂1�x, y�
� d2 · v̂2�x, y� · · · , (8)

where �v̂i�x, y�� defines the orthonormal basis of the
subspace, and �di� are the components for the refer-
ence image. In vector space notation, the components
can be defined as 
vi�f	.

After those explanations, we can reformulate our
original detection goal. The recognition method must

Fig. 5. Three versions of the target with different illuminations.

Fig. 6. (a) Correlation peak profile for Fig. 5 using the proposed
method. (b) Correlation peak profile for Fig. 5 using the LACIF.
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distinguish between images that belong or not to a
certain subspace or to a certain family of images de-
fined in Eq. (5) or Eq. (8). For 2D images, Lefebvre et

al.24 defined the LACIF operation as an operation
able to perform this classification.

We now review the LACIF filtering and its exten-
sion to 3D object recognition. We shall also define a
novel algorithm based on a local angular distance
measurement.

A. Locally Adaptive Contrast Invariant Filter

This filtering operation was used to detect images
independently of intensity changes. For an arbitrary
target (g�x, y�) and a reference object (f�x, y�), the
LACIF method is defined in terms of the correla-
tion as

CLACIF�g, f; x, y� �
�f0 � g�2�x, y�

N�v̂0 � g2��x, y� 	 �v̂0 � g�2�x, y�
,

(9)

where N is the number of pixels in the region of
support, v̂0�x, y� is the normalized version of v0�x, y�,
f0�x, y� is the zero-mean target defined as f0�x, y� �
f�x, y� 	 
fv0�x, y�, and 
f is the mean of f�x, y�.

If the intensity transformation of the target is
af�x, y� � b, where a and b are unknown parameters
that are constant over the size of a single target, the
LACIF output is equal to that obtained by the refer-
ence function, f�x, y�, i.e., the output is intensity
invariant. In other words, if g�x, y� is a linear combi-
nation of the orthonormal basis, �v̂i�x, y��, the LACIF
peak will be equal to 1, and be smaller than 1 if it is
not. In terms of a vector interpretation, the LACIF
technique is equivalent to projecting the target
(g�x, y�) onto the subspace orthogonal to v0�x, y�; that
is, to project the zero-mean target onto this region of
support, and then to calculating the cosine of the
angle � between the target and the reference
( f�x, y�).24 The vector interpretation of the LACIF fil-
ter is illustrated in Fig. 2.

The LACIF method is used to determine whether
an object belongs or not to the vector subspace gen-

Fig. 7. (a) A 3D target. (b) Representation of (a) in the basis defined
by {ka(x, y), [Ni(x, y)]} with no consideration of shadow effects. (c)
Subtraction of (a) from (b).

Fig. 8. Illumination variation in terms of the position of the point
source.
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erated by the vector basis �v0�x, y�, f�x, y��. In addi-
tion, the LACIF can be generalized for the case of
having more that two elements of the basis. Taking
into account �v̂i�x, y��i�0,1, . . . basis, LACIF can be de-
fined as

CLACIF�g, v̂i; x, y�

�
�v̂1 � g�2�x, y�

N�v̂0 � g2��x, y� 	 �
i�1

�v̂i � g�2�x, y�
. (10)

Lefebvre et al.25 applied Eq. (10) to affine transfor-
mations of intensity for 2D images.

According to our 3D illumination model, any 3D
image can be expressed as a linear combination of
four 2D images. Because of that, we propose the use

of the LACIF to detect 3D illuminated objects. The
detection method will be based on knowing if a cer-
tain 3D illuminated object is similar or not to a 3D
reference object. The reference object is defined in
terms of a certain basis given by the normally illu-
minated images �Ni�x, y��. Because the linear combi-
nation implies multiplication by constant factors, the
3D recognition result will be invariant for darker or
lighter objects.

B. Proposed Method: Local Angular Distance Correlation

We now propose a method to detect 3D objects based
on the vector subspace idea. Instead of using the
LACIF, we propose a simpler and more robust
method based on calculating the angle between a
given 3D target (e.g., a vector) and the whole sub-
space defined by a base. For the sake of clarity, con-

Fig. 9. Results for all illumina-
tion sampling for (a) the proposed
LADC method and (b) the LACIF
method.
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sider the geometrical interpretation shown in Fig. 3.
The vector space is generated only by two elements,
|v̂1	 and |v̂2	. The vector |g	 is the target. From Fig.
3, the angle, �, between |g	 and its projection, |gproj	
can be defined as

cos2��� �
�gproj�

2

�g�2 , (11)

where �g� and �gproj� are the moduli of |g	 and |gproj	.
The projection of that vector onto the subspace de-
fined by Eq. (8), can be expressed31 as

�gproj	 � �
i


v̂i�g	�v̂i	. (12)

If vector |g	 is contained in the subspace defined by
Eq. (8), then |g	 � |gproj	. In that case, the angle
between the vector and the subspace will be equal to
zero, and so the cosine is equal to unity. But if the
vector is orthogonal to that subspace, it means that
no information about the object is contained in that
subspace, so |gproj	 � 0 and the angle will be equal to
��2, and the cosine will vanish. Otherwise, the cosine
value will be between zero and 1.

Note that Eq. (12) is a measurement of the similarity
between two vectors, i.e., between the reference object
(under varying illumination) and the target. However,
the operation does not give the location of the target in
a scene. It is not shift invariant because it is evaluated
only at the origin. In order to extend the definition to
the whole (x, y) space, the numerator of Eq. (11) is

�gproj�x, y��2 � �
i �
v̂i�g	�2��

i
�v̂i � g�2�x, y�, (13)

and the denominator of Eq. (11) can be written as

�g�x, y��2 ��
�2

v0�x, y�g2�x, y� � N�v̂0 � g2��x, y�,

(14)

where

v̂0�x, y� �
v0�x, y�

v0�v0	

�
v0�x, y�

N
. (15)

From Eq. (14), the energy of the target (g2�x, y�) is
evaluated inside the region of support for each point
�x, y� of the image. This is the reason why our ap-
proach is a local angular distance measurement.

Taking into account previous equations, the final
expression for our local angular distance correlation
(LADC) is

cos2��; g, v̂i; x, y� �
�

i
�v̂i � g�2�x, y�

N�v̂0 � g2��x, y�
. (16)

Equation (16) is defined in terms of correlations,

which can be an advantage if for optical implemen-
tations. Moreover, it gives a measure of the similarity
between objects that belongs to a given vector sub-
space, and it localizes those targets in the scene be-
cause it is shift invariant. In contrast with the
LACIF, which considers only the projection onto the
silhouette, our method takes into account the projec-
tion onto all the subspace. This implies important
differences for detecting images under different illu-
minations as we shall show in Section 4.

4. Illuminated Three-Dimensional Object Detection
Results

In Section 2 we described our illumination model,
which consists of expressing a 3D object as a linear

Fig. 10. (a) Sample noisy image (SNR � 5). (b) Correlation peak
value variation. (c) PCE variation.
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combination of normal surface vector basis images
[see Eq. (4)]. Changing the lighting conditions implies
changing the constants that multiply the vector
basis. Figure 4 shows the vector basis for the ref-
erence 3D object of Fig. 1(b). Figure 4(a) is the
region of support and Figs. 4(b), 4(c), and 4(d) are
�Ni�x, y��i�X,Y,Z, respectively.

We now compare the results of 3D detection using
the LACIF and the new correlation based on angular
distance. Figure 5 shows three instances of the target
with changes in illumination. The corresponding cor-
relation peaks for the proposed method, and for the
LACIF, are shown in Figs. 6(a) and 6(b), respectively.
Note that the LACIF procedure yields missed detec-
tions for two of the targets (the output peaks are very
low). This means that the operation is not intensity
invariant for this case. On the other hand, the LADC
output value is approximately the same for all illu-
mination views. To illustrate the reason for those
differences between the LACIF and the LADC, we
must explain the choice of the vector basis. Because
we are not taking into account shadow effects in our
vector basis definition, if a certain illuminated 3D
target is affected by shadows, the vector basis will not
completely define the object, so the basis will not be
complete. This is illustrated in Fig. 7, where we see
differences between a certain illuminated target [Fig.
7(a)] and the projection of the target in the four-vector
basis [Fig. 7(b)]. Figure 7(c) shows the result of sub-
tracting Fig. 7(a) from Fig. 7(b). The difference is not
zero because the basis is not complete. For this rea-
son, a target cannot be expressed exactly in terms of
a linear combination of our four-vector space basis,
and the LACIF will fail in the detection. Because our
LADC is a measurement of the distance between the
target and the four-vector subspace, and because the
targets are quite similar, the distance will be small
and the correlation peak value will be close to 1. As a
result, our LADC is more robust to changes in illu-
mination than the LACIF.

To show the intensity invariance of the LADC
method, we represent the correlation output for all
possible illuminations as an angular map represen-
tation. The changes of illumination are generated by
changing the position of the point source that illumi-
nates the 3D object. Figure 8 shows the two angles
that will define a specific position of the point source
that illuminates the object.

The comparison between the LADC and LACIF
methods are shown in Fig. 9. Note that the LADC
values of Fig. 9(a) are quite stable around the value 1,
while the LACIF values of Fig. 9(b) fails for most of
the illuminations.

The next step is to study the LADC for 3D images
in the presence of noise. We studied the robustness
of the correlation peak for the LADC detection of
targets under Gaussian disjoint noise. Figure 10(a)
is a target corrupted with nonoverlapping noise.
Figure 10(b) shows the variation of the correlation
peak as the noise increases. A low signal-to-noise
(SNR) ratio value implies a highly noisy image.
Figure 10(b) shows the stability of the correlation
peak, which means that the LADC method is not
affected by this kind of noise. Another measure of
the performance of the correlation peak is given by
the peak to correlation energy (PCE). Figure 10(c)
shows the values of the PCE as the noise is in-
creased. The PCE measures the sharpness of the
correlation peak. A high value of PCE means a
sharp correlation peak. From Fig. 10(c) we see that
instead of decreasing the correlation peak sharp-
ness, the noise improves the results. The following
paragraphs explain that result.

Consider an image

f��x, y� � f�x, y� � R�x, y�, (17)

where f�x, y� is an arbitrary image, and R�x, y� is a
zero-mean Gaussian noise distribution with standard
deviation � that does not overlap the arbitrary image:

R�x, y� ��0 if v̂i �x, y� � 0
Gaussian noise elsewhere. (18)

The PCE value after applying our LADC method is

PCE�� �
�cos2��; f�, v̂i, 0, 0��2

�
�2

�cos2��; f�, v̂i, x, y��2dxdy

. (19)

Because the noise is nonoverlapping, the denomi-
nator of Eq. (19) can be split into two independent
terms:

PCE�� �
�cos2��; f, v̂i, 0, 0��2

�cos2��; f, v̂i, 0, 0��2 ��
(x, y)�(0, 0)

�cos2��; f�, v̂i, x, y��2dxdy

. (20)
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The second term of the denominator can be expressed
as

Considering a zero-mean Gaussian noise, Eq. (21)
can be rewritten as

cos2��; f �, v̂i, x, y�

�
K

N�
�2

v̂0*�x� 	 x, y� 	 y��R2�x�, y���dx�dy�

� K�	2, (22)

where K and K� are constant terms.
Then,

PCE�� �
�cos2��; f, v̂i, 0, 0��2

�cos2��; f, v̂i, 0, 0��2 � ��	4�
. (23)

If � ¡ �, the PCE value will converge to 1.
Finally, in order to show the discrimination abili-

ties of the new method, Fig. 11(a) shows an input

image made of two reference objects with different
illuminations and two false objects. The result for the

LADC is in Fig. 11(b). The correlation peaks for the
true targets are equal to 1, whereas for the false
target the output is lower, which demonstrates good
discrimination even in the presence of nonoverlap-
ping Gaussian noise. Note that we have used com-
puter simulated objects in which 3D mesh is obtained
digitally. For the case of a real 3D object, one needs to
register different illumination views of the object in
order to perform the vector basis.

5. Conclusion

We propose an illumination-invariant 3D recognition
method based on vector spaces. The detection is done
in terms of a local angular distance between a given
target vector and a vector subspace defined by a 3D
elementary image basis. We extended a previous
intensity-invariant LACIF expression to 3D image
recognition, and we have compared both methods.
The results show the robustness of the new proposed
method under changes of illumination. Experiments
have validated the intensity invariant recognition of
3D images in the presence of nonoverlapping Gauss-
ian noise. We have shown that the PCE value in-
creases with the amount of noise in the image. We
also successfully tested the method for composite im-
ages, when other false targets were in the scene.
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